Dinámica de modelo depredador–presa del tipo Leslie
Resumen
Palabras clave
Texto completo:
PDFReferencias
A. Andronov, I. Leontovich, and G. Maier, Qualitative theory of second-order dynamic systems. A Halsted Press Book, John Wiley and Sons, 1973.
C. Chicone, Ordinary differential equations with applications, Texts in Applied Mathematics 34, Springer, 1999.
E. Conway and J. Smoller, Global Analysis of a system of Predator-Prey Equations. SIAM J. Applied Mathematics, Vol 46, N° 4, 630-642, 1986.
L. Gallego Consecuencias del efecto Allee en el modelo de depredación de May-Holling-Tanner, Tesis de Maestría, Universidad del Quindío, Colombia, 2004
O. González, P. Tintinago and A. Rojas, Leslie-Gower type predator-prey model with sigmoid functional response. International Journal of Computer Mathematics, Taylor and Francis, 2015.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983.
H. Meneses, and E. González, Consequences of the Allee effect on Rosenzweig-McArthur predator-prey model, In R. Mondaini (Ed.) Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology, E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2004, en prensa.
V. Rai and W. Schaffer, Chaos in ecology, Chaos, Solitons and Fractals 12, 197-203, 2001.
E. Sáez and E. González, Dynamics of a predator-prey model. SIAM Journal of Applied Mathematics, Vol. 59 Nº 5, pp. 1867-1878, 1999.
R. Taylor, Predation, Chapman and Hall, 1984.
P. Tintinago and A. González Class of Leslie-Gower type predator-prey model with sigmoid functional response, Proceedings of the 13th International Conference on Computational and Mathematical methods in Science and Engineering, CMMSE 2013.
Enlaces refback
- No hay ningún enlace refback.