Sistemas para la ayuda en la recuperación y la rehabilitación del ACV

Alexander Rincon Jimenez, Arley Machcdo Bedoya

Resumen


Los accidentes cerebrovasculares son una de las principales causas de mortalidad en el mundo, pero también es una de la que más genera dificultades a los sobrevivientes, afectando su calidad de vida y la de sus familiares; la rehabilitación tradicional es la mejor forma para que estos pacientes recuperen su independencia perdida. Sin embargo, en los últimos años se han presentado una serie de desarrollos tecnológicos que prometen mejorar estos procesos como las interfaces cerebro computador (BCI) y los dispositivos robóticos para rehabilitación. Esta revisión analiza las aplicaciones tecnológicas más recientes para la asistencia de la rehabilitación del ACV, discutiendo sus posibles resultados terapéuticos y su futuro impacto en la medicina.

Palabras clave


Brain machine interfaces, robotic assisted rehabilitation, Neurorehabilitation, Neuroplasticity, robotic exoskeletons, BCI.

Texto completo:

PDF

Referencias


Rita V. Krishnamurthi et al., "Stroke Prevalence, Mortality and Disability-Adjusted Life Years in Adults Aged 20–64 Years in 1990–2013: Data from the Global Burden of Disease 2013 Study ," Neuroepidemiology , vol. 45, no. 3, pp. 190 - 202, Oct. 2015.

Bo Norrving et al., "Stroke Prevention Worldwide – What Could Make It Work?", Neuroepidemiology , vol. 45, no. 3, pp. 215 - 220, Oct. 2015,

Á. Rodríguez and F. Ortiz, "Cambios en la recuperación de la función motora en pacientes con accidente cerebrovascular crónico ," latreia, vol. 29, no. 2, pp. 123 - 132, June 2016.

M. Pompili et al., "Suicide in Stroke Survivors: Epidemiology and Prevention ," Drugs and Aging, no. 32, pp. 21-29, 2015.

Y. Fang et al., "Patient and Family Member Factors Influencing Outcomes of Post-stroke In-patient Rehabilitation ," Archives of Physical Medicine And Rehabilitation , vol. 98, no. 2, pp. 248 - 255, 2017.

Á. Arias Cuadrado, "Rehabilitación del ACV: evaluación, pronóstico y tratamiento ," Galicia clinica, vol. 70, no. 3, pp. 25-40, 2009.

M. Swapnil, M.Tambolij and P. Rohit, "A Review on Futuristic Technology ―Brain Computer Interface (BCI)," Journal of Network Communications and Emerging Technologies (JNCET), vol. 7, no. 4, pp. 22-28, 2017.

B. Mahdi, Z. Homayoon , and A. Mohammad , "Application of BCI systems in neurorehabilitation: a scoping review," Disability and Rehabilitation: Assistive Technology, vol. 10, no. 5, pp. 355-364,. 2015.

E. Donchin, K. Spencer and R. Wijesinghe, "The Mental Prosthesis: Assessing the Speed of a P300-Based Brain–Computer Interface ," IEEE Transactions on Rehabilitation Engineering , vol. 8, no. 2, pp. 174-179, 2000.

A. Remsik et al., "A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke," Expert Review of Medical Devices, vol. 13, no. 5, pp. 445-454, 2016.

Y. Hara, "Brain Plasticity and Rehabilitation in Stroke Patients ," Journal of Nippon Medical School, vol. 82, no. 1, pp. 4-13, June 2015.

D. Mattia et al., "Interfacing Brain and Computer in Neurorehabilitation," in 4th International Winter Conference on Brain-Computer Interface, BCI 2016, Yongpyeong ResortGangwon Province, 2016, p. 2.

C. Guger , B. Allison and G. Müller, "Brain-Computer Interface Research: A State-of-the-Art Summary 4," Brain-Computer Interface Research, pp. 1-8, Dec. 2015.

I. Lazarou, S. Nikolopoulos, C. Panagiotis, I. Kompatsiaris and M. Tsolaki , "EEG-Based Brain–Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21st Century ," Frontiers in Human Neuroscience, vol. 12, no. 14, pp. 2-21, 2018.

S. Fernandez and J. Rangel, "Estado del Arte de las Interfaces Cerebrales," in VIII Congreso Internacional de IngenierÌa Mec·nica y MecatrÛnica. , 2014, pp. 22-33.

H. Göksu, "BCI oriented EEG analysis using log energy entropy of wavelet packets," Biomedical Signal Processing and Control, vol. 44, pp. 101-109, 2018.

F. Velasco, Á. Fernández, S. Varona and R. Ron, "Control de una silla de ruedas mediante BCI," in Actas del 7o Simposio CEA de Bioingeniería 2015 , Málaga , 2015, pp. 63-67.

S. Ezquerro et al., "Efectos sobre la erd en tareas de control de exoesqueleto de mano empleando BCI ," , gijon, 2017, pp. 282-287.

S. Dennison, M. Wolbrecht, E. Cramer, S. Srinivasan, R. Reinkensmeyer, D. Norman, "Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy ," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 8, pp. 911-919, 2016.

S. Dennison, M. Wolbrecht, E., Cramer, S. C., Srinivasan, R., Reinkensmeyer, D. J. Norman, "Movement anticipation and eeg: Implications for BCI-contingent robot therapy," EEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 8, pp. 911-919, 2016.

L., Acqualagna, L., Blankertz, B., Kübler, A. Botrel, "Short progressive muscle relaxation or motor coordination training does not increase performance in a brain-computer interface based on sensorimotor rhythms (SMR)," International Journal of Psychophysiology, vol. 121, pp. 29-37, 2017.

E. W., Ryan, D. B., Hauser, C. K. Sellers, "Noninvasive brain-computer interface enables communication after brainstem stroke.," Science translational medicine, vol. 6, no. 257, pp. 257-264, 2014.

Z., Chen, S., Allison, B. Z., Jia, J., Wang, X., Jin, J. Qiu, "Differences in Motor Imagery Activity Between the Paretic and Non-paretic Hands in Stroke Patients Using an EEG BCI," in International Conference on Augmented Cognition, 2017, pp. 378-388.

Thiago B. S. Costa , Luísa F. S. Uribe, Diogo C. Soriano, Sara R. M. Almeida , Li L. Min , Gabriela Castel lano, Romis Attux Sarah N. Carvalho, "E ffect of the combination of different numbers of flickering f requenc ies in an SSVEP - BCI for healthy volunteers and stroke patients," in 7th Annual International IEEE EMBS Conference on Neural Engineering, Montpellier, France, 2015, pp. 78-81.

D. J., Wolpaw, J. R. McFarland, "EEG-Based Brain-controlled Lower Extremity Exoskeleton Rehabilitation Robot ," in IEEE 8th International Conference on CIS & RAM, Nin g bo, China, 2017, pp. 763-767.

L. Baldezzari, C. Bonell, and G. Gentiletti, "Download full-text PDF Análisis comparativo de respuestas P300 evocadas con estímulos auditivos vs. estímulos visuales," in XIX Congreso Argentino de Bioingeniería, Tucumán, Argentina, 2013.

C. B., Carrere, L. C., Lopez, C. A., Ballario, C Tabernig, "EEG Event-Related Desynchronization of patients with stroke during motor imagery of hand movement.," Journal of Physics: Conference Series, pp. 1-5, 2015.

P., Laer, L., Ortiz, E., Braun, C., Gharabaghi, A. Belardinelli, "Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis," euroImage: Clinical, vol. 14, pp. 726-733, 2017.

M., Xu, G., Xie, J., Chen, C. Li, "A review: Motor rehabilitation after stroke with control based on human intent.," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 232, no. 4, pp. 344-360, 2018.

S., García, A., Samaha, H., Verschure, P. Bermúdez I Badia, "Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 2, pp. 174-181, 2013.

A., Bermúdezi, S. Vourvopoulos, "Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: A within-subject analysis," ournal of NeuroEngineering and Rehabilitation, vol. 13, no. 69, 2016.

X., Xu, G., Xie, J., Li, M., Pei, W., Zhang, J. Zhang, "An EEG-driven lower limb rehabilitation training system for active and passive co-stimulation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015, pp. 4582-4585.

T. P., He, Y., Brown, S., Nakagame, S., Contreras Vidal, J. L. Luu, "Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar," ournal of Neural Engineering, vol. 13, no. 3, 2016.

A., Bermúdezi Badia, S. Vourvopoulos, "Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: A within-subject analysis," Journal of NeuroEngineering and Rehabilitation, vol. 13, no. 1, 2016.

N. Jiang, N. Mrachacz, C. Lin, G. As n rieto, . Moreno, L. Pons , K. Dremstrup, D. Farina, "A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity," IEEE Transactions on Biomedical Engineering, vol. 61, no. 7, pp. 2092-2101, 2014.

S. Wolf , H. Adams, D. Chen, A. Dromerick, K. Dunning, C. Ellerbe, A. Grande, S. Janis, M. Lansberg, R. Lazar, Y. Palesch, L. Richards, E. Roth, S. Savitz, L. Wechsler, M. Wintermark, J. Broderick, "Stroke recovery and rehabilitation research: issues, opportunities, and the National Institutes of Health StrokeNet. ," Stroke, vol. 48, no. 3, pp. 813-819, 2017.

S., Butler, A. J., Drake, D., Dhamala, M. Bajaj, "Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation," Frontiers in human neuroscience, vol. 9, no. 173, p. 173, 2015.

L. Quinto. S. Gonçalves and T. Silva, "Design of a Passive Exoskeleton to Support Sit-to-Stand Movement: A 2D Model for the Dynamic Analysis of Motion," in International Symposium on Wearable Robotics. Springer, Cham, 2018, pp. 299-303.

M., Aperador, W., & A. Cifuentes, A. Plaza, "Diseño de órtesis activa para cirugías prolongadas.," Revista Cubana de Investigaciones Biomédicas, vol. 35, no. 1, 2016.

M., Matsubara, T., Noda, T., Teramae, T., Morimoto, J. Hamaya, "Learning assistive strategies for exoskeleton robots from user-robot physical interaction," Pattern Recognition Letters, vol. 99, no. 1, pp. 67-76, Nov. 2017.

M. H., Ochoa-Luna, C., Rahman, M. J., Saad, M., Archambault, P. Rahman, "Force-position control of a robotic exoskeleton to provide upper extremity movement assistance," nternational Journal of Modelling, Identification and Control, vol. 21, no. 4, pp. 390-400, 2014.

S. Ates, J. W. HaarmanArno H. A. Stienen, "SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke," Autonomous Robots, vol. 41, no. 3, pp. 711–723, marzo 2017.

Titus S. HansenChris K. BitikoferBahram E. SobbiJoel C. Perry, "Design of MobIle Digit Assistive System (MIDAS): A Passive Hand Extension Exoskeleton for Post Stroke Rehabilitation," in International Symposium on Wearable Robotics,2018, pp. 535-539.

A. Campos, M. and E. Bock, "Robotic System for Active-Passive Strength Therapy," in International Conference on Human Systems Engineering and Design: Future Trends and Applications, 2018, pp. 987-993.

S., Christensen, S., Islam, M. R. U. Bai, "An upper-body exoskeleton with a novel shoulder mechanism for assistive applications. In Advanced Intelligent Mechatronics," in IEEE International Conference on, 2017, pp. 1041-1046.

D. Ferris and J. Young, "State of the art and future directions for lower limb robotic exoskeletons," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 2, pp. 171-182, 2017.

H. I., Edwards, D., & Hogan, N. Krebs, "Forging Mens et Manus: The MIT Experience in Upper Extremity Robotic Therapy," In Neurorehabilitation Technology. Springer, Cham, pp. 333-350, 2016.

Burgar CG, Shor Lum PS, "Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke ," Arch Phys Med Rehabil , vol. 83, no. 9, pp. 952–9 , 2002.

Burgar CG, Van der Loos M Lum PS, "MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study ," Rehabil Res Dev , vol. 43, p. 631, 2006.

M., Colombo G, Riener R. Nef T, "ARMin-robot for rehabilitation of the upper extremities," in IEEE Int Conference Robot Automat , vol. 14, 2006, pp. 3152–3157.

Mihelj M, Riener R. Nef T, "ARMin: a robot for patient-cooperative arm therapy," Med Biol Eng Comput. , vol. 45, pp. 887–900 , 2007.

Amirabdollahian F, Topping M Loureiro R, "Upper limb robot mediated stroke therapy—GENTLE/s approach ," Autonomous Robots , vol. 15, pp. 35–51 , 2000.

Mojtaba. Behzadipour, Saeed. Vossoughi, G.R Sharifi, "Model reference adaptive impedance control of rehabilitation robots in operational space.," in Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1698-1703.

Rupp R, Müller-Putz GR, Murray-Smith R, Gi-ugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kübler A, Leeb R, Neuper C, Müller K-R, Mattia D Millán JDR, "Combining brain– computer interfaces and assistive technologies: state-of-the-art and challenges ," Front Neuroscience, 2010.

Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N Buch E, "Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. ," Stroke, vol. 39, no. 9,pp. 910–917 , 2008.

Broetz D, Rea M, Läer L, Yilmaz Ö, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG. Ramos-Murguialday A, "Brain-machine interface in chronic stroke rehabilitation: a controlled study. ," Ann Neurol , vol. 74, pp. 100–108 , 2013.

S. L., McFarland, D. J., Miner, A., Cramer, S. C., Wolbrecht, E. T., Wolpaw, J. R., Reinkensmeyer, D. J. Norman, "Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke," journal of Neural Engineering, vol. 15, no. 5, pp. 1741-2552, 2018.

A.A., Mokienko, O., Lyukmanov, R., Biryukova, E., Kotov, Turbina, Nadareyshvily, Bushkova Frolov, "ost-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: A randomized controlled multicenter trial," Frontiers in Neuroscience, vol. 11, p. 400, June 2017.


Enlaces refback

  • No hay ningún enlace refback.